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Resum (CAT)
El teorema clàssic de Pascal afirma que si un hexàgon a P2(C) està inscrit en

una cònica llavors els costats oposats de l’hexàgon es troben en tres punts que

s’ubiquen sobre una recta, anomenada recta de Pascal. Zhongxuan Luo va donar

el 2007 una generalització del teorema de Pascal per a corbes de grau arbitrari.

En el present article es donen dues demostracions d’aquesta generalització. La

primera és autocontiguda i fa ús del teorema de Carnot, mentre que la segona es

basa en el teorema fonamental de Max Noether.

Abstract (ENG)
Pascal’s classical theorem asserts that if a hexagon in P2(C) is inscribed in a conic,

then the opposite sides of the hexagon lie on a straight line, called Pascal line.

Zhongxuan Luo gave in 2007 a generalization of Pascal’s theorem for curves of

arbitrary degree. In the present article, two proofs of this generalization are given.

The first one is self-contained and makes use of Carnot’s theorem, while the second

proof is based on Max Noether’s Fundamental theorem.
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Pascal’s Mystic Hexagram

Figure 1: Pascal Type theorem for n = 3.

1. Introduction

One of the classical results in projective geometry is Pascal’s theorem, also known as Pascal’s Mystic
Hexagram. This theorem, obtained by Blaise Pascal in 1640, asserts that if a hexagon in P2(C) is inscribed
in a conic, then the opposite sides of the hexagon lie on a straight line; c.f. [6, § 5.6, Cor. 1].

There are many known generalizations of Pascal’s theorem. For example, Chasles’ theorem (c.f. [3])
or the Cayley-Bacharach theorem (c.f. [5]) are generalizations of Pascal’s theorem. In [8], Zhongxuan Luo
presents another generalization of Pascal’s theorem (see Fig. 1): Let l1, l2, l3 be three non-concurrent lines
and take a collection of n ≥ 2 points Si ⊂ li on each line, such that Si ∩ lj = ∅ for j 6= i . Choose two points
P1,i , P2,i ∈ Si on each collection and let R1, R2, R3 be the triple of points given by the Pascal mapping (see
Definition 2.11) applied to the six chosen points. Then the 3n points S1 ∪S2 ∪S3 lie on an algebraic curve
of degree n that contains none of the lines l1, l2, l3 if and only if there exists an algebraic curve of degree
n − 1 intersecting each line li in {Ri} ∪ Si \ {P1,i , P2,i}.

The aim of this article is to present two different proofs of Zhongxuan Luo’s extension of Pascal’s
theorem. The first proof is elementary and makes use of a version of Carnot’s theorem; see Section 3. The
approach is similar to [8], but we do not use spline theory. The second proof is based on Max Noether’s
Fundamental theorem; see Section 4.

Throughout this paper we work in the complex projective plane P2(C) and we set a projective reference
R = {A1, A2, A3; O}, so that A1 = (1 : 0 : 0), A2 = (0 : 1 : 0), A3 = (0 : 0 : 1) and O = (1 : 1 : 1).
Observe that then A2,3 = OA1 ∩ A2A3 = (0 : 1 : 1), A3,1 = OA2 ∩ A3A1 = (1 : 0 : 1), and A1,2 =
OA3 ∩ A1A2 = (1 : 1 : 0), where for points A, B ∈ P2(C), we mean AB to be the projective line that joins
A and B. Moreover, we set l1 = A2A3, l2 = A3A1 and l3 = A1A2 to be the sides of the projective triangle
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A1A2A3 with vertices at points A1, A2, A3.

2. An extension of Carnot’s theorem

In this section we review a generalization of Carnot’s and Menelaus’s theorems, which allows to determine
whether a certain configuration of points lies on an algebraic curve of a given degree. We also introduce
some constructions from [8] that appear in the generalization of Pascal’s theorem.

Definition 2.1. Given points P1, ... , Pr ∈ AiAj\{Ai , Aj}, where i , j ∈ {1, 2, 3}, i 6= j . We define the charac-
teristic ratio of P1, ... , Pr with respect to the reference R to be [Ai , Aj ; P1, ... , Pr ]R =

∏r
k=1(Ai , Aj , Ai ,j , Pk),

where (Ai , Aj , Ai ,j , Pk) denotes the cross ratio; c.f. [4, § 5.2].

The notion of characteristic ratio defined in [8] and the one defined in Definition 2.1 are inverse to each
other.

Example 2.2. Let Pk = (0 : λk : 1) ∈ A2A3 with λk ∈ C \{0}, k = 1, ... , r . Then, [A2, A3; P1, ... , Pr ]R =∏r
k=1(A2, A3, A2,3, Pk) =

∏r
k=1 λk .

With this notation at hand, Menelaus’s theorem (c.f. [7]) and Carnot’s theorem (c.f. [2]) can be stated
as follows.

Theorem 2.3 (Menelaus’s Theorem). Let Pi ∈ li , i = 1, 2, 3, be points different from A1, A2 and A3.
Then, P1, P2 and P3 are collinear if and only if [A2, A3; P1]R [A3, A1; P2]R [A1, A2; P3]R = −1.

Theorem 2.4 (Carnot’s Theorem). Let P1, P2 ∈ l1, P3, P4 ∈ l2, and P5, P6 ∈ l3 be six distinct points
different from A1, A2 and A3. Then, P1, P2, ... , P6 lie on a conic disjoint with {A1, A2, A3} if and only if
[A2, A3; P1, P2]R [A3, A1; P3, P4]R [A1, A2; P5, P6]R = 1.

The next theorem is a natural generalization of Menelaus’s and Carnot’s theorems to curves of arbitrary
degree. It is called Carnot’s theorem in [1] and is equivalent to [8, Thm. 4.4]. For completeness we provide
a proof here.

Theorem 2.5. Let Si = {P1,i , ... , Pn,i} be a collection of n different points of li \ {A1, A2, A3}, i = 1, 2, 3.
Then, S1 ∪ S2 ∪ S3 lie on an algebraic curve of degree n disjoint with {A1, A2, A3} if and only if

[A2, A3; P1,1, ... , Pn,1]R [A3, A1; P1,2, ... , Pn,2]R [A1, A2; P1,3, ... , Pn,3]R = (−1)n.

Proof. Recall that the cases n = 1 and n = 2 are Menelaus’s theorem and Carnot’s theorem respectively.
Then we can assume that n ≥ 3. We denote

C[X , Y , Z ]n = {F ∈ C[X , Y , Z ]; F homogeneous polynomial of degree n} .

With this in hand, we define the map ϕ : C[X , Y , Z ]n
/

(XYZ ) → C[Y , Z ]n × C[X , Z ]n × C[X , Y ]n such

that ϕ([F (X , Y , Z )]) = (F (0, Y , Z ), F (X , 0, Z ), F (X , Y , 0)).

Clearly, ϕ is well defined and linear. Let us see that it is also injective: if [F ] ∈ ker(ϕ), then
ϕ([F (X , Y , Z )]) = (F (0, Y , Z ), F (X , 0, Z ), F (X , Y , 0)) = (0, 0, 0). Thus, X , Y and Z divide F . There-
fore, [F ] = [0].
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Hence, ϕ is an isomorphism over its image. We claim that the image of ϕ is exactly the set Mn ⊂
C[Y , Z ]n × C[X , Z ]n × C[X , Y ]n defined as

Mn :=


 ∑

i+j=n

Bi ,jY
iZ j ,

∑
i+j=n

Ci ,jX
iZ j ,

∑
i+j=n

Di ,jX
iY j

 ; Bn,0 = D0,n, B0,n = C0,n, Cn,0 = Dn,0

 .

Clearly, Im(ϕ) ⊆ Mn. Moreover, by computing dimensions, we find

dimC

(
C[X , Y , Z ]n

/
(XYZ )

)
= 3n = dimC(C[Y , Z ]n) + dimC(C[X , Z ]n)

+ dimC(C[X , Y ]n)− 3 = dimC(Mn).

It follows that Im(ϕ) = Mn.

Let Pi ,1 = (0 : ai : 1), Pi ,2 = (1 : 0 : bi ), and Pi ,3 = (ci : 1 : 0) with ai , bi , ci ∈ C \ {0}, i = 1, 2, ... , n.
Note that, by degree reasons, any curve of degree n containing S1 ∪ S2 ∪ S3 and not containing l1, l2 nor
l3 must be disjoint with {A1, A2, A3}. Such a curve exists if and only if(

λ1

n∏
i=1

(aiZ − Y ), λ2

n∏
i=1

(biX − Z ), λ3

n∏
i=1

(ciY − X )

)
∈ Mn, (1)

for some λ1,λ2,λ3 ∈ C \ {0}. According to the definition of Mn, a necessary and sufficient condition
for (1) to be true is that the following system

λ1
∏n

i=1 ai = (−1)nλ2,
(−1)nλ1 = λ3

∏n
i=1 ci ,

λ2
∏n

i=1 bi = (−1)nλ3,
(2)

has a non-trivial solution for λ1,λ2,λ3. However, the system (2) has a non-trivial solution if and only if
(−1)n =

∏n
i=1 aibici = [A2, A3; P1,1, ... , Pn,1]R [A3, A1; P1,2, ... , Pn,2]R [A1, A2; P1,3, ... , Pn,3]R . This com-

pletes the proof.

Next, we introduce some notions from [8] that will be needed in the generalization of Pascal’s theorem.

Definition 2.6. The characteristic map σi ,j : AiAj → AiAj relative to Ai , Aj , Ai ,j is the projective involution
that satisfies σi ,j(Ai ) = Aj , σi ,j(Aj) = Ai , and σi ,j(Ai ,j) = Ai ,j , where i , j = 1, 2, 3, i 6= j .

Observation 2.7. If P = σi ,j(Q) is the image of Q under the characteristic map relative to Ai , Aj , Ai ,j ,
then [Ai , Aj ; P, Q]R = (Ai , Aj , Ai ,j , P)(Ai , Aj , Ai ,j , Q) = 1.

An interesting fact is that if we take a point in each side of a triangle, and we consider their respective
images of the characteristic map relative to each side, then these six points lie on a conic. This property
will take an important role in Section 4.

Proposition 2.8. Let P1 ∈ l1, P2 ∈ l2 and P3 ∈ l3 be three points different from A1, A2, A3. Then, P1,
P2, P3, σ2,3(P1), σ3,1(P2) and σ1,2(P3) lie on a conic.

Proof. By Observation 2.7, [A2, A3;σ2,3(P1), P1]R = [A3, A1;σ3,1(P2), P2]R = [A1, A2;σ1,2(P3), P3]R = 1.
Then, the result follows by Carnot’s theorem.
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The following results contain basic properties of the characteristic map; c.f. [8, Cor. 3.7, 3.9].

Proposition 2.9. Any three distinct points P1 ∈ l1, P2 ∈ l2, and P3 ∈ l3 different from A1, A2, A3 are
collinear if and only if σ2,3(P1), σ3,1(P2), and σ1,2(P3) are collinear.

Proof. Let P1 = (0 : a : 1), P2 = (1 : 0 : b), and P3 = (c : 1 : 0), with a, b, c ∈ C \ {0}. Then,
σ2,3(P1) = (0 : 1 : a), σ3,1(P2) = (b : 0 : 1), and σ1,2(P3) = (1 : c : 0). Menelaus’s theorem asserts that
a necessary and sufficient condition of P1, P2, P3 to be collinear is that

−1 = [A2, A3; P1]R [A3, A1; P2]R [A1, A2; P3]R = abc. (3)

Similarly, their images under their corresponding characteristic map are collinear if and only if

−1 = [A2, A3;σ2,3(P1)]R [A3, A1;σ3,1(P2)]R [A1, A2;σ1,2(P3)]R =
1

abc
. (4)

Since both equalities (3) and (4) are equivalent, this completes the proof.

Proposition 2.10. Let P1, P2 ∈ l1, P3, P4 ∈ l2, and P5, P6 ∈ l3 be any six distinct points different from
A1, A2, A3. Then, P1, P2, ... , P6 lie on a conic if and only if their images by the corresponding characteristic
map lie on a conic as well.

Proof. Let P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 = (1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), and
P6 = (c2 : 1 : 0), with ai , bi , ci ∈ C \ {0}, i = 1, 2. Then, σ2,3(P1) = (0 : 1 : a1), σ2,3(P2) = (0 : 1 : a2),
σ3,1(P3) = (b1 : 0 : 1), σ3,1(P4) = (b2 : 0 : 1), σ1,2(P5) = (1 : c1 : 0), and σ1,2(P6) = (1 : c2 : 0). By
Carnot’s theorem, the six points P1, P2, ... , P6 lie on a conic if and only if

1 = [A2, A3; P1, P2]R [A3, A1; P3, P4]R [A1, A2; P5, P6]R = a1a2b1b2c1c2. (5)

Similarly, their images under their corresponding characteristic map lie on a conic if and only if

1 = [A2, A3;σ2,3(P1),σ2,3(P2)]R [A3, A1;σ3,1(P3),σ3,1(P4)]R

× [A1, A2;σ1,2(P5),σ1,2(P6)]R =
1

a1a2b1b2c1c2
.

(6)

Since both equalities (5) and (6) are equivalent, this completes the proof.

The following construction from [8] plays a crucial role in Zhongxuan Luo’s generalization of Pascal’s
theorem.

Definition 2.11. The Pascal mapping is the map Ψ := (σ2,3×σ3,1×σ1,2)◦Φ, where Φ: (l1 \{A2, A3})2×
(l2 \ {A3, A1})2 × (l3 \ {A1, A2})2 → l1 × l2 × l3 satisfies

Φ((P1, P2), (P3, P4), (P5, P6)) = {P1P2 ∩ P4P5, P3P4 ∩ P6P1, P5P6 ∩ P2P3}.

If we denote Q1 = P1P2∩P4P5, Q2 = P3P4∩P6P1, and Q3 = P5P6∩P2P3 then, Ψ((P1, P2), (P3, P4), (P5, P6)) =
{σ2,3(Q1),σ3,1(Q2),σ1,2(Q3)}.

5Reports@SCM 4 (2018), 1–8; DOI:10.2436/20.2002.02.14.
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3. A Pascal type theorem

In this section we present the generalization of Pascal’s theorem given in [8]. We give an elementary
proof based on the results of the previous section. In Section 4 we will give a second proof using Max
Noether’s Fundamental theorem. First let us recall the complete version of Pascal’s original theorem. For
completeness, we provide a proof here based on Menelaus’s and Carnot’s theorems.

Theorem 3.1. Let P1, P2 ∈ l1, P3, P4 ∈ l2, and P5, P6 ∈ l3 be six distinct points, all of them different from
A1, A2, A3, and let Q1 = P1P2 ∩ P4P5, Q2 = P3P4 ∩ P6P1, and Q3 = P5P6 ∩ P2P3. Then, P1, P2, ... , P6

lie on a conic if and only if Q1, Q2, Q3 are collinear.

Proof. Let P1 = (0 : a1 : 1), P2 = (0 : a2 : 1), P3 = (1 : 0 : b1), P4 = (1 : 0 : b2), P5 = (c1 : 1 : 0), and
P6 = (c2 : 1 : 0), with ai , bi , ci 6= 0, i = 1, 2; it follows that Q1 = (0 : −1 : b2c1), Q2 = (a1c2 : 0 : −1),
and Q3 = (−1 : b1a2 : 0). By Carnot’s theorem, P1, P2, ... , P6 lie on a conic disjoint from {A1, A2, A3} if
and only if

1 = [A2, A3; P1, P2]R [A3, A1; P3, P4]R [A1, A2; P5, P6]R = a1a2b1b2c1c2. (7)

Similarly, by Menelaus’s theorem, we have that a necessary and sufficient condition for Q1, Q2, Q3 to be
collinear is that

−1 = [A2, A3; Q1]R [A3, A1; Q2]R [A1, A2; Q3]R =
−1

b2c1

−1

a1c2

−1

b1a2
. (8)

Since both equalities (7) and (8) are equivalent, this proves the theorem.

Notice that by Proposition 2.9, if Q1, Q2, Q3 lie on the same line, then the points in the Pascal mapping
Ψ((P1, P2), (P3, P4), (P5, P6)) are also collinear points. It is precisely this version of Pascal’s theorem that
was generalized by Zhongxuan Luo to higher degrees. The precise statement is the following.

Theorem 3.2 (Pascal Type Theorem). Let Sj = {Pi ,j}ni=1 be a collection of n ≥ 2 distinct points on the
set lj \ {A1, A2, A3}, j = 1, 2, 3. Let us choose two points on each collection Sj , and let R1, R2, R3 be the
triple given by the Pascal mapping applied to the six chosen points. Then, the 3n points S1 ∪ S2 ∪ S3 lie
on an algebraic curve of degree n disjoint with {A1, A2, A3} if and only if there exists an algebraic curve of
degree n−1 disjoint with {A1, A2, A3} which contains R1, R2, R3 and the 3(n−2) points from S1∪S2∪S3

that have not been chosen.

Proof. Let us take ai , bi , ci ∈ C \ {0} and Pi ,1 = (0 : ai : 1), Pi ,2 = (1 : 0 : bi ), and Pi ,3 = (ci : 1 : 0) for
every i = 1, ... , n. Without loss of generality, let us choose the points P1,1, P2,1, P1,2, P2,2, P1,3 and P2,3,
to apply the Pascal mapping; see Fig. 1 above. Then,

Ψ ((P1,1, P2,1) , (P1,2, P2,2) , (P1,3, P2,3)) = {R1, R2, R3}, (9)

where R1 = σ2,3(Q1) = (0 : b2c1 : −1), R2 = σ3,1(Q2) = (−1 : 0 : a1c2), and R3 = σ1,2(Q3) = (b1a2 :
−1 : 0), with Q1 = P1,1P2,1 ∩ P2,2P1,3, Q2 = P1,2P2,2 ∩ P2,3P1,1, and Q3 = P1,3P2,3 ∩ P2,1P1,2.

By Theorem 2.5, the 3n points S1∪S2∪S3 lie on an algebraic curve of degree n disjoint with {A1, A2, A3}
if and only if

(−1)n = [A2, A3; P1,1, ... , Pn,1]R [A3, A1; P1,2, ... , Pn,2]R [A1, A2; P1,3, ... , Pn,3]R

=
n∏

i=1

(A2, A3, A2,3, Pi ,1)(A3, A1, A3,1, Pi ,2)(A1, A2, A1,2, Pi ,3) =
n∏

i=1

aibici .
(10)

http://reportsascm.iec.cat6

http://reportsascm.iec.cat


Sergi Baena Miret

Similarly, there exists an algebraic curve of degree n−1 disjoint with {A1, A2, A3} which contains R1, R2, R3

and the 3(n − 2) points from S1 ∪ S2 ∪ S3 that have not been chosen if and only if

(−1)n−1 = [A2, A3; P3,1, ... , Pn,1, R1]R [A3, A1; P3,2, ... , Pn,2, R2]R [A1, A2; P3,3, ... , Pn,3, R3]R

=

[
(A2, A3, A2,3, R1)

n∏
i=3

(A2, A3, A2,3, Pi ,1)

][
(A3, A1, A3,1, R2)

n∏
i=3

(A3, A1, A3,1, Pi ,2)

]

×

[
(A1, A2, A1,2, R3)

n∏
i=3

(A1, A2, A1,2, Pi ,3)

]
= −

n∏
i=1

aibici .

(11)

Since both equalities (10) and (11) are equivalent, this completes the proof.

4. A Pascal type theorem and Max Noether’s fun-
damental theorem

We give a new proof of Theorem 3.2 based on Max Noether’s Fundamental theorem; in particular, we will
make us of a corollary of it. To do so, we need a few basic notions about algebraic curves in P2(C); for
more details, see [6].

Max Noether’s Fundamental theorem is concerned with the following question (c.f. [6, § 5.5]): suppose
C , C ′ are two projective plane curves with no common factors, and C ′′ is another curve satisfying C ∩C ′ ⊂
C ∩C ′′, when counted with multiplicity. So, when is there a curve that intersects C in the points of C ∩C ′′

that are not in C ∩ C ′?

For our purpose, we do not use directly Max Noether’s Fundamental theorem, but we use a corollary
of it. First, if C , C ′ are projective plane curves with no common components, the intersection cycle C ·C ′
is defined as the formal sum

C · C ′ =
∑

P∈C∩C ′

mP(C , C ′)P,

where mP(C , C ′) is the multiplicity of the point P in C ∩ C ′; c.f. [6, § 5.5]. In particular, mP(C , C ′) = 0
if and only if P /∈ C ∩ C ′.

If C , C ′ are projective plane curves of degree n and m respectively, CC ′ is the projective plane curve of
degree n + m consisting on the union of C and C ′.

With this notation at hand, we are in conditions to state the corollary of Max Noether’s Fundamental
theorem; c.f. [6, § 5.5, Cor. 2].

Theorem 4.1. Let C , C ′, C ′′ be projective plane curves such that C ′ and C ′′ have no common component
with C . If all the points of C∩C ′ are simple points of C and C ·C ′′ ≥ C ·C ′ (i.e., mP(C , C ′′) ≥ mP(C , C ′) for
every P ∈ C ), then there is a curve Γ of degree deg(Γ) = deg(C ′′)−deg(C ′) such that C ·Γ = C ·C ′′−C ·C ′.

Now we are in conditions to give the new proof of Theorem 3.2.

Proof. (Pascal Type Theorem) Let us take the same notation as in (9). Here is when Proposition 2.8
becomes crucial, since it asserts that the points Q1, Q2, Q3, R1, R2, R3 lie on a conic; let Γ2 be that conic.

7Reports@SCM 4 (2018), 1–8; DOI:10.2436/20.2002.02.14.
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Let C = (P2,1P1,2) (P2,2P1,3) (P2,3P1,1) be the cubic generated by the three opposites sides, disjoint with
{A1, A2, A3}, of the hexagon with vertices P1,1, P2,1, P1,2, P2,2, P1,3, P2,3.

First assume that the 3n points S1 ∪ S2 ∪ S3 lie on an algebraic curve Γn of degree n disjoint with
{A1, A2, A3} and consider the algebraic curve Γn+2 = Γ2Γn of degree n + 2. Then, we have that

Γn+2 · l1l2l3 =
n∑

i=1

(Pi ,1 + Pi ,2 + Pi ,3) + Q1 + Q2 + Q3 + R1 + R2 + R3,

and C · l1l2l3 = P1,1 + P2,1 + P1,2 + P2,2 + P1,3 + P2,3 + Q1 + Q2 + Q3. Therefore, Γn+2 · l1l2l3−C · l1l2l3 =∑n
i=3 (Pi ,1 + Pi ,2 + Pi ,3) + R1 + R2 + R3.

By Theorem 4.1, there exists a curve Γ of degree deg(Γ) = deg(Γn+2) − deg(C ) = n − 1 such that
Γ · l1l2l3 =

∑n
i=3 (Pi ,1 + Pi ,2 + Pi ,3) + R1 + R2 + R3. So, Γ is an algebraic curve of degree n−1 that passes

through the 3(n − 1) points P3,1, ... , Pn,1, P3,2, ... , Pn,2, P3,3, ... , Pn,3, R1, R2, R3.

Reciprocally, suppose that there exists an algebraic curve Γ
′
n−1 of degree n−1 disjoint with {A1, A2, A3}

that contains R1, R2, R3 and the 3(n − 2) points from S1 ∪ S2 ∪ S3 that have not been chosen. Consider
the algebraic curve Γ

′
n+2 = C Γ

′
n−1 of degree n + 2. Then, we have that

Γ
′
n+2 · l1l2l3 =

n∑
i=1

(Pi ,1 + Pi ,2 + Pi ,3) + Q1 + Q2 + Q3 + R1 + R2 + R3,

and Γ2 · l1l2l3 = Q1+Q2+Q3+R1+R2+R3. Therefore, Γ
′
n+2 · l1l2l3−Γ2 · l1l2l3 =

∑n
i=1 (Pi ,1 + Pi ,2 + Pi ,3).

By Theorem 4.1, there exists a curve Γ
′

of degree deg(Γ
′
) = deg(Γ

′
n+2) − deg(Γ2) = n such that

Γ
′ · l1l2l3 =

∑n
i=1 (Pi ,1 + Pi ,2 + Pi ,3). So, Γ′ is an algebraic curve of degree n that passes through the 3n

points P1,1, ... , Pn,1, P1,2, ... , Pn,2, P1,3, ... , Pn,3. This completes the proof.
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